目前,常见的太阳能光伏发电系统的并网方案,根据太阳能电池方阵的工作电压可以分为低压并网系统和高压并网系统。低压并网系统常由3~5块光伏电池组件串联组成,直流电压小于120V。
这种方式的优点是每一串光伏电池组件串联较少,对太阳阴影的耐受性比较强;缺点是直流侧电流较大,在设计中需要选用大截面的直流电缆。高压并网系统常用于太阳能电池方阵的额定功率较大的系统,组件串联的数量较多,直流电压比较高,该方式的缺点是对太阳阴影的耐受性比较小;优点是高电压,低电流,使用的电缆的线径较小,和逆变器的匹配更佳,使得逆变器的转换效率更高,目前大型的光伏发电系统多采用高压系统。
目前,太阳能光伏发电系统的设计容量可以从几千瓦到几百千瓦,甚至上兆瓦,由于国内的光伏发电与建筑结合的形式各种各样,设备的选型需根据太阳能电池方阵安装的实际情况(如组件规格、安装朝向等)进行优化设计,太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(>10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。